

THE ISLAND RESILIENCY ACTION CHALLENGE

Puerto Rico Electric Power Authority (PREPA)

CREF

October 16, 2019

Overview of Historical Challenges

- Inadequate maintenance of T&D infrastructure
- Outdated codes and standards
- Key generation located far from major load centers
- Inadequate systems for monitoring and controls

- Thermal generation older than industry average
- Major towers unable to withstand winds of 150 mph
- Distribution lines built in small, crowded corridors, with lower than industry standard clearance to vegetation

- Year-round tropical growth
- Transmission over mountainous ranges
- Isolated system with no neighboring utilities

- Susceptible to repeated hurricane events
- Difficult logistics for aid and restoration work

- Lack of market access and ability to invest capital
- Poor credit rating
- Subsidized rates for certain customers

- Revenue impacts due to economic recession
- High-level of technical losses and theft

- Mass migration and significant losses of experience personnel
- Safety records below industry standards
- Lack of institutionalized processes and procedures
- Outdated information technology and systems
- Above-market benefits in collective bargaining agreements
- Underfunded pension obligations

Actions taken so far

PREPA, in collaboration with the Government of Puerto Rico, has achieved measurable progress in several key areas and is working to implement initiatives that will improve its operations and overall resiliency

- Completed system repair and restoration of damages caused by Hurricanes Irma and Maria through the utilization of available federal funding sources
- Issued RFP to solicit the transfer of operation and management of PREPA's T&D system to a private operator
- Started on the implementation of key strategic initiatives to modernize generation fuel mix, reduce fuel cost and price volatility, and improve operations, including commencement of the conversion of San Juan 5 & 6 units from diesel to natural gas, renegotiation of PPOAs, and commencement of vegetation management work
- Developed Energy System Modernization (ESM) Plan, which includes investments needed to improve grid resilience
- Submitted a proposed Integrated Resource Plan (IRP) (pending regulatory approval) that will serve as the planning document for new generation investment
- Executed on a Definitive Restructuring Support Agreement (RSA), which provides for substantial savings
 in the recovery of legacy costs associated with the financing of Puerto Rico's electric infrastructure
- Obtained Fiscal Plan approval from the Financial Oversight Management Board (FOMB), three years in a row

What needs to be done

The Energy System Modernization (ESM) Plan provides the vision, transformation approach, and cost estimate input for the permanent reconstruction work needed to achieve a more reliable and resilient Puerto Rico energy system

The following summarizes the key work components to be completed in order to achieve greater resiliency:

			_	
	Transmission	Substations	Distribution and Metering	Generation and Fuel
•	Harden 350 miles of the 230 kV transmission grid, mostly hardening along new or	 Relocate or elevate selected existing substations 	 Strengthen existing distribution poles 	 Improve reliability of existing units
	existing ROW	Install hurricane rated fencing	 Underground selected distribution lines/circuits 	 Improve operational flexibili to support integration of a
•	Harden about 20% of existing 115 kV lines	 Repair/replace old breakers, transformers, and grounding 	 Replace existing insulators with higher insulation levels 	decentralized systemConvert key facilities into
٠	Conduct tree removal and trimming activities	systems	 Install submersible and 	natural gas and deploy new combined cycle capacity
	Underground selected	 Digitize substations (e.g., SCADA, remote video 	flood-proof equipment	Replace existing peaking
	transmission wires	monitoring, etc.)	 Deploy distribution automation technology 	units
•	Replace lattice towers with monopole design	 Replace or reinforce selected control buildings 	 Install advance metering infrastructure (AMI) 	 Install additional LNG/gas import, storage and delivery infrastructure
•	Build new transmission to enable the deployment of islandable grids	 Install water barriers or other engineered solutions 	, ,	 Deploy renewables and battery technology

How much will it cost?

The ESM Working Group estimates a total of \$20 billion of investments is needed to rebuild the Puerto Rico power system to industry standard levels of reliability and resiliency, as shown in table below

- Throughout the development of the ESM plan, a collaborative process referred to as the Working Group, assessed what needs to be done to rebuild the Puerto Rico power system and to achieve industry standard levels of reliability and resilience
- The Working Group was led by the Puerto Rico Central Office of Recovery, Reconstruction, and Resiliency (COR3) and engaged key stakeholders such as PREPA, the New York Power Authority (NYPA), the U.S. Department of Energy (DOE) and National Labs

Category	Cost Estimates (\$M)	
Transmission & Substations	\$6,498	
Distribution	\$5,703	
Generation and Fuel	\$3,552	
Technology Transformation	\$1,835	
DERs & Microgrids	\$1,755	
Security	\$290	
System Operations	\$215	
Emergency Preparedness	\$112	
Operational Efficiencies	\$21	
Regulatory & Policy	\$12	
Total	\$19,993	

What is the greatest challenge to achieve resiliency?

The most urgent obstacle to greater energy resiliency for the island is:

Securing the necessary funding to make the required capital investments needed to achieve grid resiliency while minimizing the impacts on customer rates