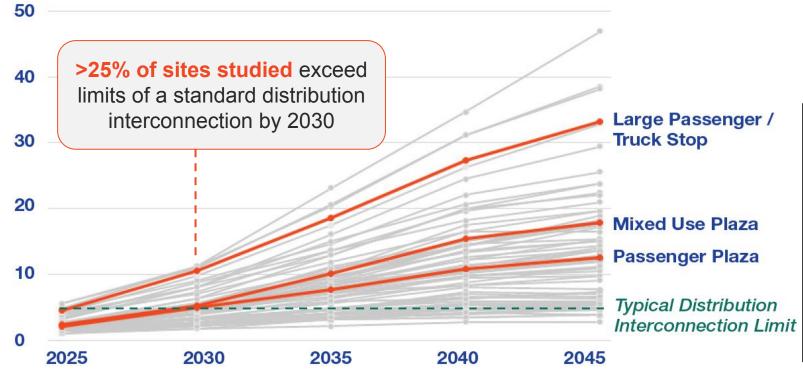


Introduction to National Grid

- Electric, natural gas, and clean energy delivery company serving more than 20 million people through our networks in New York and Massachusetts
- Make-Ready EV programs in New York and Massachusetts
- Over 4,600 charging ports installed, 49% in environmental justice and disadvantaged communities
- Electrify our entire internal light-duty fleet by 2030. We plan to electrify 1,617 vehicles in the US by 2030.

The Problem

The forecasted demand for power from public highway charging will be significant even as soon as 2030.



Projected charging capacity for 71 Northeastern highway sites

Megawatts of power to meet annual peak demand, over time

- Adoption of electric MHDV significantly increases the power demand after 2030.
- Delivering this amount of power will require upgrading a site's grid interconnection, potentially at transmission level.
- RMI analysis indicates that the IRA will bring EV trucks within cost parity with ICE vehicles sooner than in our study.

Note: Analysis seeks to match ZEV goals for New York + Massachusetts, makes simplifying assumption that all ZEVs are electric. See study for discussion of assumptions, including role of hydrogen fueling and impact on capacity.

The Key Obstacle/Challenge to Solving the Problem

We need to identify the most cost-effective sites and develop an interconnection process that is fit for purpose.

- □ Site Identification State Energy Agencies, DOTs, and utilities should collaborate to identify the best sites
 - Long-term, collaborative planning which considers traffic patterns and electric infrastructure location and capacity will allow us to guide charging to the most cost-effective sites.
 - This approach will drive down costs, improve resilience, and accommodate the exponential EV growth.
- □ Interconnection Process The current process is not well-suited for public highway fast charging
 - The magnitude of power demand will require T&D upgrades, and potentially transmission level interconnections.
 - EVSE developers will have trouble making a business case with the level of T&D interconnection costs expected.
 - T&D upgrades require much longer timelines than EVSE installation.
 - Anticipatory planning and investment in the T&D infrastructure is required to enable and facilitate market adoption.

Benefits

Coordinating deployment of highway charging and anticipatory grid investments can accelerate transportation electrification and help meet driver needs over time.

- Reduce range anxiety and encourage greater EV adoption.
- Achieve climate goals and improved air quality in Boston and across the state.
- Lower total system costs by planning long-term, eliminating duplicative investments, and identifying where large-scale charging infrastructure can be most easily deployed.
- Avoid long wait times for drivers by eliminating bottlenecks to charging deployment.
- Seamlessly enable the EV transition for passenger and commercial vehicles.

Final Statement

Regarding Clean Transportation, to achieve Boston's climate, health and equity goals, a critical obstacle to collectively overcome in 12 months is......

Developing the approach to most efficiently and cost-effectively enable grid infrastructure to serve highway charging

nationalgrid