AEG Task Force Heat Pump Readiness Tool

November 15th Update

Agenda

- Background & Objective Overview
- Present to-date progress on task force objectives
- Next steps for SOW

Background

The "NYC Carbon Neutral Roadmap Report" identified 18,700 buildings/year (best case scenario) need to electrify annually between 2020 – 2050 to achieve 80x50.

Within those 18,7000 buildings commercial office buildings account for 1 Billion sq. ft.

TABLE 4: KEY BUILDINGS AND INDUSTRIAL SECTOR FINDINGS FROM THE PATHWAYS MODELING			
	Electrification	Low Carbon Fuels	Diversified
The scale and pace of energy efficiency and electrification retrofits is high	gh.		
Proportion of buildings electrifying space heating and hot water systems by 2050 (percentage of gross square footage)	59%	31%	62%
Average number of buildings electrifying each year (2020-2050)	18,700	10.700	19,800
Number of buildings electrifying by 2050	607,000	340,000	642,000
Percentage of buildings adopting at least Tier 1 energy efficiency upgrades by 2050	87%	88%	92%
Average number of buildings implementing only Tier 1 energy efficiency upgrades each year (2020-2050)	11,700	16,200	10,500
Average number of buildings implementing Tier 1 + more significant energy efficiency upgrades each year (2020-2050)	27.500	27.400	28,900
Number of buildings implementing energy efficiency measures by 2050	909,000	910,000	958,000

Source: NYC Carbon Neutral Roadmap Report (2021)

Objective Overview

Improved market intelligence to identify buildings with the highest potential for heat pump integration – especially looking at Class B and C office, as well as buildings in disadvantaged communities

12-month proposed solution: create a weighted database merging existing sources (CBL, NYCA, ConEd load map, DAC health map) to enable analytics re: heat pump readiness

Task Force Timeline

Q2: AEG Net Zero Building Summit held, Task Force convenes Q3: Idea generation, existing data research, meeting with industry stakeholders

Q4: Formalization of tool scope of work proposal

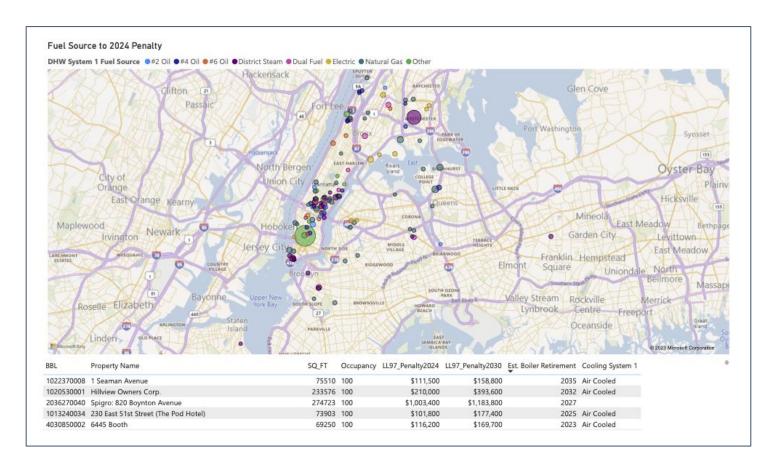
Tool Proposal

 An open-access, easy-to-use interactive online platform that provides basic heat pump readiness information to stakeholders such as:

- City officials
- AEC firms and HVAC contractors
- Building owners and Condo/Co-Op boards
- NYSERDA, NYC Accelerator, Utilities, etc.
- General Public

Tool Inputs

Two input screen options for user



Data Sources

- Initial data alignment efforts:
 - Local Law 84 Database DOB (including layered Local Law 97 calculations)
 - Local Law 87 Energy Audit Data
 - NYC Clean Heat Historical Dataset
 - NYC Clean Air Tracking System (CATS) Permits
- Potential to add new ones/add "advanced" inputs to the tool
 - NYSERDA RTEM data
 - Additional DOB/City data
 - Disadvantaged communities layer
 - Additional utility data (ConEdison, National Grid)
 - Google solar API for roof mapping?

Data Exploration

- Qualify data
 - Assess quality
 - Look for the missing pieces
- Building assessment criteria
 - Evaluate key attributes
 - Quantify outcomes
- Feasibility and impact study
 - Test assumptions
 - Establish trends

Dataset Flow and Integration

Heat Pump Readiness Dataset Attributes

Property Information

- Address
- Owner
- Primary se Type
- Floor Area
- # Stories
- Vintage
- Geo Data (Lat/Lon)
- Borough / Zip

Equipment Information

- Primary Heating System
 Type
- Primary Heating
 Distribution Type
- Primary Heating Terminal Type
- DHW System Type
- Boiler Information
 - Install Date
 - Total Capacity
 - Est. Retirement Year

Emissions Information

Emissions & Energy by Fuel Source:

- Electricity (Grid)
- District Steam
- Fossil Fuel

Generating "Heat Pump Readiness" Score

Possible Parameters:

- Heating Fuel Sources (fuel oil, NG, steam)
- Historic energy consumption/GHG emissions
- HVAC Equipment Information
 - Space/water heating equipment
 - Heat distribution system
 - System setpoints (advanced→ RTEM)
- Building size, building footprint
- Disadvantaged Community Location
- Roof space assessment (advanced → Google API)
- Electric capacity assessment (advanced → ConEdison)

Tool Outputs

Address search

Building information: HPR

Address: XXXX

Borough Block Lot: XXXXXXXXX

9.5/10

Energy Data: XXXXXX

Heating System (LL87): XXXXX

Advanced Input:

Water loop Δt

Neighborhood Selection w/ Map

Top Buildings: HPR

Building A 10/10
Building B 9.7/10
Building C 9.3/10
Building D 8.7/10
Building E 8.6/10

HPR = Heat Pump Readiness

NYSERDA - Key Objectives & Funding Criteria

Group Discussion

- Would you be in support of a tool like this?
- What functionality is desired and how should be prioritized?
- What data should be part of the tool? What data sources are we missing?
- What data set parameters should be prioritized for the heat pump readiness score? What is the calculation weighting?